Probabilistic Fiber Tracking Using Particle Filtering
نویسندگان
چکیده
This paper presents a novel and fast probabilistic method for white matter fiber tracking from diffusion weighted MRI (DWI). We formulate fiber tracking on a nonlinear state space model which is able to capture both smoothness regularity of fibers and uncertainties of the local fiber orientations due to noise and partial volume effects. The global tracking model is implemented using particle filtering, which allows us to recursively compute the posterior distribution of the potential fibers. The fiber orientation distribution is theoretically formulated for prolate and oblate tensors separately. Fast and efficient sampling is realised using the von Mises-Fisher distribution on unit spheres. Given a seed point, the method is able to rapidly locate the global optimal fiber and also provide a connectivity map. The proposed method is demonstrated on a brain dataset.
منابع مشابه
Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling
Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white...
متن کاملProbabilistic Fiber Tracking Using Particle Filtering and Von Mises-Fisher Sampling
This paper presents a novel and fast probabilistic method for white matter fiber tracking from diffusion weighted magnetic resonance imaging (DWI). We formulate fiber tracking on a nonlinear state space model which is able to capture both smoothness regularity of fibers and uncertainties of the local fiber orientations due to noise and partial volume effects. The global tracking model is implem...
متن کاملProbabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies
By assuming that orientation information of brain white matter fibers can be inferred from Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) measurements, tractography algorithms provide an estimation of the brain connectivity in vivo. The two key ingredients of tractography are the diffusion model (tensor, high-order tensor, Q-ball, etc.) and the means to deal with uncertainty during the ...
متن کاملProbabilistic Tractography Using Q-Ball Modeling and Particle Filtering
By assuming that orientation information of brain white matter fibers can be inferred from Diffusion Weighted Magnetic Resonance Imaging (DWMRI) measurements, tractography algorithms provide an estimation of the brain connectivity in-vivo. The two key ingredients of tractography are the diffusion model (tensor, high-order tensor, Q-ball, etc.) and the way to deal with uncertainty during the tra...
متن کاملRao-Blackwellized particle filter for multiple target tracking
In this article we propose a new Rao-Blackwellized particle filtering based algorithm for tracking an unknown number of targets. The algorithm is based on formulating probabilistic stochastic process models for target states, data associations, and birth and death processes. The tracking of these stochastic processes is implemented using sequential Monte Carlo sampling or particle filtering, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 10 Pt 2 شماره
صفحات -
تاریخ انتشار 2007